The week in papers (22/04/18)

As a way to keep posts going, I am starting a short recap about interesting papers being published (or being discovered) every now and then. Probably I will write longer posts about some of them in the future.

Let’s get this thing going:

Two papers using ‘centroid estimation‘ to retrieve interesting information:

Extract voice information using high-speed camera

Mariko AkutsuYasuhiro Oikawa, and Yoshio Yamasaki, at The Journal of the Acoustical Society of America

Realization of hybrid compressive imaging strategies

Recently I have been reading a lot about Compressive Sensing strategies. One of the things we always want when we work in a single-pixel architecture is to project the lowest possible number of masks, because the projecting process is the longest in all the acquisition procedure (and it gets longer and longer when you increase the spatial resolution of your images).

In the past, several strategies haven been implemented to reduce that number of projections. From going fully random to partially scan a basis at random and at the low frequency region, each approach presents some benefits and more or less speed gain.

In this work by the group of K.F. Kelly, they explored a different approach. Instead of chosing one measurement basis and design a sensing strategy (picking random elements, or centering around the low frequency part of the basis, or a mix), they create a measurement basis by merging different functions. They call it hybrid patterns. The basic idea is to chose a low number of patterns which work well for recovering low frequency content of natural images, and also some other patterns which are good to recover high frequency content. The novel thing here is that they do not require the patterns to belong to the same orthogonal basis, thus being able to carefully design its measurement basis. This provides very good quality results with a low number of projections.

Another thing I liked a lot was the Principal Component Analysis (PCA) part of the paper. Basically, they gathered a collection of natural images and they generated an orthogonal basis by using PCA. This leads me to think of PCA as a way of obtaining orthogonal bases where objects have their sparsest representation (maybe I am wrong about that).

Realization of hybrid compressive imaging strategies,

Y.Li et al, at Journal of the Optical Society of America A

(featured image exctracted from Fig.2 of the manuscript)

Abstract:

The tendency of natural scenes to cluster around low frequencies is not only useful in image compression, it also can prove advantageous in novel infrared and hyperspectral image acquisition. In this paper, we exploit this signal model with two approaches to enhance the quality of compressive imaging as implemented in a single-pixel compressive camera and compare these results against purely random acquisition. We combine projection patterns that can efficiently extract the model-based information with subsequent random projections to form the hybrid pattern sets. With the first approach, we generate low-frequency patterns via a direct transform. As an alternative, we also used principal component analysis of an image library to identify the low-frequency components. We present the first (to the best of our knowledge) experimental validation of this hybrid signal model on real data. For both methods, we acquire comparable quality of reconstructions while acquiring only half the number of measurements needed by traditional random sequences. The optimal combination of hybrid patterns and the effects of noise on image reconstruction are also discussed.

Fig3_Kelly
Really nice to see that PCA gives something very similar to DCT functions. This means that compressing images with DCT is really a good choice.

Experimental comparison of single-pixel imaging algorithms

I just read on ArXiv.org that L. Bian and his colleagues made a cool comparison between several ways of performing single-pixel imaging. They have tested the performance on several recovery procedures, some quite familiar but others not so well stablished. I find both Table 1 and Fig. 7 extremely interesting. One sums up really well the different reconstruction approaches that can be used in single-pixel imaging (with or without using Compressive Sensing). The figure points out one thing that experience has told me: every problem you try to solve usually needs an specific solver if you want to get good and fast results (which is extremely important when you start to work with BIG objects, as I plan to write soon here).

Experimental comparison of single-pixel imaging algorithms,

L. Biam et al, last revised 24 Oct 2017, https://arxiv.org/abs/1707.03164

(featured image extracted from Fig.7 of the manuscript)

Abstract:

Single-pixel imaging (SPI) is a novel technique capturing 2D images using a photodiode, instead of conventional 2D array sensors. SPI owns high signal-to-noise ratio, wide spectrum range, low cost, and robustness to light scattering. Various algorithms have been proposed for SPI reconstruction, including the linear correlation methods, the alternating projection method (AP), and the compressive sensing based methods. However, there has been no comprehensive review discussing respective advantages, which is important for SPI’s further applications and development. In this paper, we reviewed and compared these algorithms in a unified reconstruction framework. Besides, we proposed two other SPI algorithms including a conjugate gradient descent based method (CGD) and a Poisson maximum likelihood based method. Both simulations and experiments validate the following conclusions: to obtain comparable reconstruction accuracy, the compressive sensing based total variation regularization method (TV) requires the least measurements and consumes the least running time for small-scale reconstruction; the CGD and AP methods run fastest in large-scale cases; the TV and AP methods are the most robust to measurement noise. In a word, there are trade-offs between capture efficiency, computational complexity and robustness to noise among different SPI algorithms. We have released our source code for non-commercial use.

 

table