Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device

People at Judkewitz lab tend to do really cool stuff. This time they have implemented a binary phase modulator using a DMD.

Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device,

M. Hoffmann et al, at Optics Letters

Abstract:

The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.

Controlling phase is of paramount interest in multiple optical scenarios. Doing it fast is very difficult, given that spatial light modulators that are really good at modulating phase precisely tend to be slow (~hundreds of Hz). On the other side, intensity modulators such as DMDs are very fast (~20 kHz), but they cannot directly modulate phase. There have been several workarounds with the general idea of using DMDs to modulate phase. I remember a very nice paper by A. Mosk, using groups of mirrors to codify the phase of a superpixel.

Here, they use the fact that DMDs reflect light in two different directions to introduce a phase shift with a moving mirror into one of the reflection directions, achieving binary phase distributions at kHz refresh rates.

 

 

Seems like we are getting closer and closer to get a high-efficiency method to modulate phase with DMD’s.

Light transport and imaging through complex media & Photonics West 2018

Last ~20 days have been completely crazy. First, I went to a meeting organized by the Royal Society: Light transport and imaging through complex media. It was amazing. Beautiful place, incredible researchers, and a nice combination of signal processing and optical imaging. I am sure I will be looking for future editions.

After that, I assisted Photonics West. Both BIOS and OPTO were full of interesting talks. Scattering media, adaptive optics, DMDs, some compressive sensing… Fantastic week. There I talked about two recent works we made in Spain: balanced photodetection single-pixel imaging and phase imaging using a DMD and a lateral position detector. Both contributions were very well received, and I am happy with the feedback I got. So many new ideas… now I need some time to implement them! I plan on writing a bit here on the blog about the last work, which has been published in the last issue of Optica.

 

Some of the cool stuff I heard about:

Valentina Emiliani – Optical manipulation of neuronal circuits by optical wave front shaping. Very cool implementations combining multiple SLMs and temporal focusing to see how neurons work.

Richard Baraniuk – Phase retrieval: tradeoffs and a new algorithm. How to recover phase information from intensity measurements. Compressive sensing and inverse problems. Very interesting, and a really good speaker. It is difficult to find someone capable of explaining these concepts as easily as Richard.

Michael Unser – GlobalBioIm

When being confronted with a new imaging problem, the common experience is that one has to reimplement (if not reinvent) the wheel (=forward model + optimization algorithm), which is very time consuming and also acts as a deterrent for engaging in new developments. This Matlab library aims at simplifying this process by decomposing the workflow onto smaller modules, including many reusable ones since several aspects such as regularization and the injection of prior knowledge are rather generic. It also capitalizes on the strong commonalities between the various image formation models that can be exploited to obtain fast, streamlined implementations.

Oliver Pust – High spatial resolution hyperspectral camera based on a continously variable filter. Really cool concept of merging a continous filter and multiple expositions to obtain hyperspectral information and even 3D images.

Seungwoo Shin – Exploiting a digital micromirror device for a multimodal approach combinning optical diffraction tomography and 3D structured illumination microscopy. I am always happy to see cool implementations with DMDs. This is one of them. KAIST delivers.

We propose a multimodal system combining ODT and 3-D SIM to measure both 3-D RI and fluorescence distributions of samples with advantages including high spatiotemporal resolution as well as molecular specificity. By exploiting active illumination control of a digital micromirror device and two different illumination wavelengths, our setup allows to individually operate either ODT or 3-D SIM. To demonstrate the feasibility of our method, 3-D RI and fluorescence distributions of a planar cluster of fluorescent beads were reconstructed. To further demonstrate the applicability, a 3-D fluorescence and time-lapse 3-D RI distributions of fluorescent beads inside a HeLa cell were measured.

Post featured image extracted from here.