Single frame wide-field Nanoscopy based on Ghost Imaging via Sparsity Constraints (GISC Nanoscopy)

This just got posted on the arXiv, and has some interesting ideas inside. Using a ground glass diffuser before a pixelated detector, and after a calibrating procedure where you measure the associated speckle patterns when scanning the sample plane, a single shot of the fluorescence signal speckle pattern can be used to retrieve high spatial resolution images of a sample. Also, the authors claim that the approach should work on STORM setups, achieving really fast and sharp fluorescence images. Nice single-shot example of Compressive Sensing and Ghost Imaging!

Single frame wide-field Nanoscopy based on Ghost Imaging via Sparsity Constraints (GISC Nanoscopy)

by Wenwen Li, Zhishen Tong, Kang Xiao, Zhentao Liu, Qi Gao, Jing Sun, Shupeng Liu, Shensheng Han, and Zhongyang Wang, at


The applications of present nanoscopy techniques for live cell imaging are limited by the long sampling time and low emitter density. Here we developed a new single frame wide-field nanoscopy based on ghost imaging via sparsity constraints (GISC Nanoscopy), in which a spatial random phase modulator is applied in a wide-field microscopy to achieve random measurement for fluorescence signals. This new method can effectively utilize the sparsity of fluorescence emitters to dramatically enhance the imaging resolution to 80 nm by compressive sensing (CS) reconstruction for one raw image. The ultra-high emitter density of 143 {\mu}m-2 has been achieved while the precision of single-molecule localization below 25 nm has been maintained. Thereby working with high-density of photo-switchable fluorophores GISC nanoscopy can reduce orders of magnitude sampling frames compared with previous single-molecule localization based super-resolution imaging methods.

Experimental setup and fundamentals of the calibration and recovery process. Extracted from Fig.1 of the manuscript.

Simultaneous multiplane imaging with reverberation multiphoton microscopy

Really nice pre-print by the people at Boston University, leaded by J. Mertz.

Love the idea of generating ~infinite focal spots (until you run out of photons) inside a sample, and using a extremely fast single-pixel detector to recover the signal. Very original way to tackle volumetric imaging in bio-imaging!

Fundamental workflow of the technique. Extracted from Fig. 1 in the manuscript

Simultaneous multiplane imaging with reverberation multiphoton microscopy

by Devin R. Beaulieu, Ian G. Davison, Thomas G. Bifano, and Jerome Mertz, at


Multiphoton microscopy (MPM) has gained enormous popularity over the years for its capacity to provide high resolution images from deep within scattering samples. However, MPM is generally based on single-point laser-focus scanning, which is intrinsically slow. While imaging speeds as fast as video rate have become routine for 2D planar imaging, such speeds have so far been unattainable for 3D volumetric imaging without severely compromising microscope performance. We demonstrate here 3D volumetric (multiplane) imaging at the same speed as 2D planar (single plane) imaging, with minimal compromise in performance. Specifically, multiple planes are acquired by near-instantaneous axial scanning while maintaining 3D micron-scale resolution. Our technique, called reverberation MPM, is well adapted for large-scale imaging in scattering media with low repetition-rate lasers, and can be implemented with conventional MPM as a simple add-on.

Inverse Scattering via Transmission Matrices: Broadband Illumination and Fast Phase Retrieval Algorithms

Interesting paper by people at Rice and Northwestern universities about different phase retrieval algorithms for measuring transmission matrices without using interferometric techniques. The thing with interferometers is that they provide you lots of cool stuff (high sensibility, phase information, etc.), but also involve quite a lot of technical problems that you do not want to face every day in the lab: they are so sensitive that it is a pain in the ass to calibrate and measure without vibrations messing everything up.

Using only intensity measurements (provided by a common sensor such as a CCD) and algorithmic approaches can provide the phase information, but at a computational cost that sometimes makes things not very useful. There is more info about all of this (for the coherent illumination case) in the Rice webpage (including a dataset and an implementation of some of the codes).

Inverse Scattering via Transmission Matrices: Broadband Illumination and Fast Phase Retrieval Algorithms

by Sharma, M. et al., at IEEE Transactions on Computational Imaging 


When a narrowband coherent wavefront passes through or reflects off of a scattering medium, the input and output relationship of the incident field is linear and so can be described by a transmission matrix (TM). If the TM for a given scattering medium is known, one can computationally “invert” the scattering process and image through the medium. In this work, we investigate the effect of broadband illumination, i.e., what happens when the wavefront is only partially coherent? Can one still measure a TM and “invert” the scattering? To accomplish this task, we measure TMs using the double phase retrieval technique, a method which uses phase retrieval algorithms to avoid difficult-to-capture interferometric measurements. Generally, using the double phase retrieval method re- quires performing massive amounts of computation. We alleviate this burden by developing a fast, GPU-accelerated algorithm, prVAMP, which lets us reconstruct 256^2×64^2 TMs in under five hours.

After reconstructing several TMs using this method, we find that, as expected, reducing the coherence of the illumination significantly restricts our ability to invert the scattering process. Moreover, we find that past a certain bandwidth an incoherent, intensity-based scattering model better describes the scattering process and is easier to invert.

De-scattering with Excitation Patterning (DEEP) Enables Rapid Wide-field Imaging Through Scattering Media

Very interesting stuff from the people at MIT regarding imaging through scattering media. Recently, multiple approaches taking advantage of temporal focusing (TF) increased efficiency inside scattering media when using two-photon microscopy have been published, and this goes a step further.

Here, the authors use wide-field structured illumination, in combination with TF, to obtain images with a large field-of-view and a slow number of camera acquisitions. To do so, they sequentially project a set of random structured patterns using a digital micromirror device (DMD). Using the pictures acquired for each illumination pattern in combination with the point-spread-function (PSF) of the imaging system allows to recover images of different biological samples without the typical scattering blur.

Optical design and working principle of the system. Figure extracted from “De-scattering with Excitation Patterning (DEEP) Enables Rapid Wide-field Imaging Through Scattering Media,” Dushan N. Wadduwage et al., at

De-scattering with Excitation Patterning (DEEP) Enables Rapid Wide-field Imaging Through Scattering Media

by Dushan N. Wadduwage et al., at arXiv.


From multi-photon imaging penetrating millimeters deep through scattering biological tissue, to super-resolution imaging conquering the diffraction limit, optical imaging techniques have greatly advanced in recent years. Notwithstanding, a key unmet challenge in all these imaging techniques is to perform rapid wide-field imaging through a turbid medium. Strategies such as active wave-front correction and multi-photon excitation, both used for deep tissue imaging; or wide-field total-internal-refection illumination, used for super-resolution imaging; can generate arbitrary excitation patterns over a large field-of-view through or under turbid media. In these cases, throughput advantage gained by wide-field excitation is lost due to the use of point detection. To address this challenge, here we introduce a novel technique called De-scattering with Excitation Patterning, or ‘DEEP’, which uses patterned excitation followed by wide-field detection with computational imaging. We use two-photon temporal focusing (TFM) to demonstrate our approach at multiple scattering lengths deep in tissue. Our results suggest that millions of point-scanning measurements could be substituted with tens to hundreds of DEEP measurements with no compromise in image quality.

Rapid broadband characterization of scattering medium using hyperspectral imaging

People at LKB (and St. Andrews) keep shining light into scattering media. This time, they have developed a cool approach for measuring the multispectral Transmission Matrix (MSTM) of a medium. This knowledge allows to control each spectral component of a light beam when travelling through the medium, which permits to shape, for example, the spectral and temporal profiles of light pulses. This is quite nice, as can be used to generate tight focci inside biological tissues, improving the performance of nonlinear microscopy techniques.

Usually, the measurement of the MSTM entails a long iterative process (basically you just measure the TM for each spectral channel you want to characterize). This is not always possible (usually you do not have a laser with all the wavelengths you need to measure), and also tends to be slow (which is a problem if you want to measure the MSTM of a changing medium). Here the authors tackle this problem by performing a wavelength-to-spatial mapping, thus measuring the spatio-spectral information in just one shot of a CCD camera. To do so, they use a clever design with a lenslet array and a dispersion grating. In this way, the total time it takes to acquire the MSTM is reduced in ~2 orders of magnitude. Elegant, simple, and fast.

Design concept for the spectral measurements using a lenslet array and a single CCD sensor. Extracted from “Rapid broadband characterization of scattering medium using hyperspectral imaging,” A. Boniface et al.,

Rapid broadband characterization of scattering medium using hyperspectral imaging

by Antoine Boniface et al., at Optica


Scattering of a coherent ultrashort pulse of light by a disordered medium results in a complex spatiotemporal speckle pattern. The form of the pattern can be described by knowledge of a spectrally dependent transmission matrix, which can in turn be used to shape the propagation of the pulse through the medium. We introduce a method for rapid measurement of this matrix for the entire spectrum of the pulse based on a hyperspectral imaging system that is close to 2 orders of magnitude faster than any approach previously reported. We demonstrate narrowband as well as spatiotemporal refocusing of a femtosecond pulse temporally stretched to several picoseconds after propagation through a multiply scattering medium. This enables new routes for multiphoton imaging and manipulation through complex media.

Compressive optical imaging with a photonic lantern

New single-pixel camera design, but this time using multicore fibers (MCF) and a photonic lantern instead of a spatial light modulator. Cool!

The fundamental idea is to excite one of the cores of a MCF. Then, light propagates through the fiber, which has a photonic lantern at the tip that generates a random-like light pattern at its tip. Exciting different cores of the MCF generates different light patterns at the end of the fiber, which can be used to obtain images using the single-pixel imaging formalism.

There is more cool stuff in the paper, for example the Compressive Sensing algorithm the authors are using, using positivity constraints. This is indeed quite relevant if you want to get high quality images, because of the reduced number of cores present in the MCF (remember, 1 core = 1 pattern, and the number of patterns determines the spatial resolution of the image in a single-pixel camera). It is also nice that there is available code from the authors here.

Some experimental/simulation results (nice Smash logo there!). Extracted from
Debaditya Choudhury et al., “Compressive optical imaging with a photonic lantern,” at

Compressive optical imaging with a photonic lantern

by Debaditya Choudhury et al., at arXiv


The thin and flexible nature of optical fibres often makes them the ideal technology to view biological processes in-vivo, but current microendoscopic approaches are limited in spatial resolution. Here, we demonstrate a new route to high resolution microendoscopy using a multicore fibre (MCF) with an adiabatic multimode-to-singlemode photonic lantern transition formed at the distal end by tapering. We show that distinct multimode patterns of light can be projected from the output of the lantern by individually exciting the single-mode MCF cores, and that these patterns are highly stable to fibre movement. This capability is then exploited to demonstrate a form of single-pixel imaging, where a single pixel detector is used to detect the fraction of light transmitted through the object for each multimode pattern. A custom compressive imaging algorithm we call SARA-COIL is used to reconstruct the object using only the pre-measured multimode patterns themselves and the detector signals.